Experimento

2

Leis de Ohm e Kirchhoff

Objetivo: Verificar as leis de Ohm e Kirchhoff.

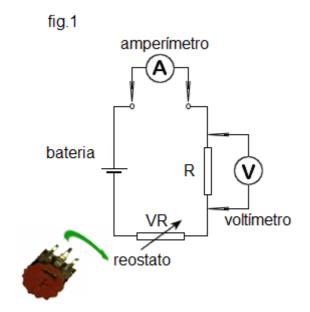
Contexto

Em circuitos mais complexos, os resistores podem estar ligados de tal modo, que não possam ser separados em combinações em série e em paralelo. Circuitos mais complexos podem ter mais de uma bateria ou fonte de voltagem. O procedimento geral para resolver circuitos complexos envolve as leis de Kirchhoff.

Com o conhecimento da lei de Ohm e das condições que caracterizam os movimentos das cargas elétricas em circuitos, qualquer problema sobre corrente contínua fica definido e resolvido.

Equipamento e Material

- Multímetro/PC/Analisador gráfico
- Placa de protótipo
- Fonte de tensão (12V d.c., 1.5V d.c.)
- Resistores 2,7K Ω , 4,7K Ω , 470 Ω e 1K Ω).
- Conectores


Procedimento:

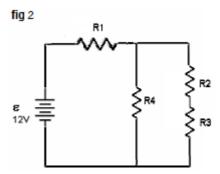
Parte A

1. Implemente o circuito esquematizado na fig.1 com a bateria (12V), o resistor fixo (1K) e o reostato (1K) conectados em série.

Nota prática: - Antes de completar o circuito o reostato deve ser ajustado para seu valor máximo de resistência. Isto permite que a corrente deva ser aumentada enquanto a resistência do reostato é reduzida. Se você iniciar com o reostato em resistência zero existe a possibilidade de que a corrente inicial demasiada resulte em prejuízos para um ou mais componente do circuito.

a. Varie a resistência do reostato $VR(\Omega)$ e complete a tabela.

Tabela	V	x I		
VR(Ω)	4/4	3/4	2/4	1/4
V (volts)				
I (mA)				


b.Com o resultado de suas anotações, utilize o "Graphical Analysis" ou um analisador gráfico qualquer e obtenha o gráfico de **V**(tensão) x **I**(corrente).

- c.Examine o gráfico V versus I e responda: R é ôhmico?
- **d**.Meça **R** com o multímetro. Discuta o resultado.

Parte B

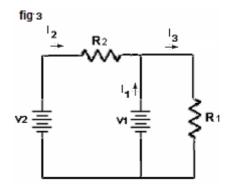
2.Conecte o circuito da fig.2, com: (R1 = 2,7K Ω , R2 = 4,7K Ω , R3 = 470 Ω e

 $R4 = 1K\Omega$).

a.Meça as tensões, $(V_{R1}, V_{R2}, V_{R3}, V_{R4})$ e as correntes $(I_{R1}, I_{R2}, I_{R3}, I_{R4})$ em R1 , R2 , R3 e R4.

b.Compare o valor de $I_{R4} + I_{R2}$, com I_{R1} .

c.Compare o valor de I_{R2} com I_{R3}.


d.Compare o valor de V_{R2} + V_{R3} com V_{R4} .

e.Compare o valor de V_{R1} + V_{R2} + V_{R3} com ε .

f.Compare o valor medido de I_{R1} com o valor calculado (valor teórico).

g.Em cada caso discuta o que ocorre e compare com os cálculos teóricos.

3.Implemente o circuito esquematizado na fig. 3 .R1 = 470Ω (ou próximo), R2 = $1K\Omega$ (ou próximo) V2 = 12 volts, V1 = 1,5 volt (pilha)

a.Meça e anote as tensões V_1 , V_2 .

b.Meça e anote a queda de tensão em cada resistor (V_{R1} , V_{R2}).

c.Meça e anote as correntes (I₁, I₂, I₃).

d. Verifique a validade das regras de Kirchhoff (resolva o circuito).

e.Discuta os resultados obtidos. Em cada caso compare o resultado medido com o cálculo efetuado.

Nota: - Este importante circuito, na condição $I_1 = 0$, atua como um regulador de tensão. Pequenas flutuações de tensão na fonte de potência maior, V_2 , não afetarão a tensão V_1 , em R1.

Referências:

Young & Freedman, Física, São Paulo, Addison Wesley, 2009 Hesnick, Robert Halliday e Krane Kenneth, Física, Livros técnicos e Científicos Editora S.A. Rio-RJ, 1996.

Sears, Francis Weston, Física, Livros Técnicos e Científicos, Rio de Janeiro, 1981.

http://www.ngsir.netfirms.com/englishhtm/Circuit.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/HFrame.html